Binary Search in Haskell and Python 3.6

I've been learning a lot about Haskell lately, so I decided to write my own implementation of binary search after coming across Jacob Sheehy's implementation. In my own I wanted a nicer functional interface to locating a value in an entire list though. I also wanted it to be safe, using the Maybe monad in the event a value doesn't exist or the list is empty.
module Search where

-- A humble implementation of binary search in Haskell
binarySearch :: Int -> [Int] -> Maybe Int
binarySearch _ [] = Nothing
binarySearch value list = search 0 ((length list) - 1)
    search :: Int -> Int -> Maybe Int
    search i j sublist = do
      if i > j 
      then Nothing
      else do
        let midPoint = ((i + j) `quot` 2)
            currentValue = list !! midPoint
        -- compare outputs one of LT, GT, EQ
        case compare value currentValue of
          LT -> search i (midPoint - 1)
          GT -> search (midPoint + 1) j
          EQ -> Just midPoint

main :: IO()
main = do
  print (binarySearch (1) [1..10])
I'm sure this is hardly the most efficient solution, but it lets me write a somewhat similar solution in Python for comparison, using code from prior posts.
#! /usr/bin/env python3.6
# -*- coding: utf-8 -*-

What I believe to be the same (or similar) pattern as expressed in Haskell.

from abc import abstractmethod
from typing import Callable, Any, Generic, TypeVar, List, Text, Optional

U = TypeVar('U')

class Monad:
    Abstract base monad type.

    def bind(self, f: Callable[[Any], Any]) -> 'Monad':
        raise NotImplementedError

    def __rshift__(self, f: Callable[[Any], Any]) -> 'Monad':
        return self.bind(f)

    def unit(cls, *args: Any) -> 'Monad':
        raise NotImplementedError

class Maybe(Monad, Generic[U]):
    A Maybe monad.
    def __init__(self, __value: Optional[U] =None, just: bool =True) -> None:
        self.value = __value
        self.just = just

    def __str__(self) -> Text:
        if self.just:
            return f'Just({self.value})'
            return 'Nothing'

    def __repr__(self) -> str:
        return self.__str__()

    def bind(self, f: Callable[[Any], Any]) -> 'Maybe':
        if self.just:
            # instead of having the function return a new instance internally
            return Maybe(f(self.value))
            return self

    def unit(cls, value: Optional[U] =None) -> 'Maybe':
        return cls(value)

class Just(Maybe[U]):
    A successful Maybe monad.
    def __init__(self, __value: Optional[U] =None) -> None:
        super(Just, self).__init__(__value)

class Nothing(Maybe[U]):
    A 'failed' Maybe monad.
    def __init__(self) -> None:
        super(Nothing, self).__init__(just=False)

def binarySearch(value: int, sorted_list: List[int]) -> Maybe[int]:
    Recursively search a sorted list for a value.
    length = len(sorted_list)

    if not length:
        return Nothing()

    def search(lower_bound=0, upper_bound=length - 1):
        if lower_bound > upper_bound:
            return Nothing()

        mid_point = (lower_bound + upper_bound) // 2
        current_value = sorted_list[mid_point]

        if current_value > value:
            return search(lower_bound, mid_point - 1)
        elif current_value < value:
            return search(mid_point + 1, upper_bound)
            return Just(mid_point)

    result = search()

    return result

if __name__ == '__main__':
    some_list = [1, 14, 16, 17, 21, 35]

    print(binarySearch(1, some_list))  # Just(0)
    print(binarySearch(2, some_list))  # Nothing
I've been learning a lot about typing while helping bring Python 2-style annotations to Pillow/PIL.

(EDIT: I found while type checking with Mypy that defining a unit method in the ABC Monad violated the Liskov Substitution Principle, and so deleted it.)